Newer
Older
#' @param data output from decontam or generate_phyloseq
#' @param output Output directory
#' @param bar Plotting bar plot with raw reads number.
#' @param compo Plotting with relative composition.
#' @param column1 Column name of factor used to sort sample
#' @param column2 Column name of factor used to split barplot
#' @param sname Change sample.id by the corresponding factor levels in graph.
#' @param num Number of top taxon to display.
#' @param rare Column name for splitting rare curves.
#' @param rank Taxonomic rank name. You can provide multiple ranks seperated by comma.
#'
#' @return Exports barplots in an html file and returns plot in list object:
#' \itemize{
#' \item $bars: raw abundance barplot
#' \item $compo: relative abundnce barplot
#' \item $rare: rarefaction curves
#' }
#'
#'
#' @import phyloseq
#' @import ggplot2
#' @import gridExtra
#' @import grid
#' @importFrom microbiome aggregate_top_taxa
#' @importFrom microbiome plot_composition
#' @importFrom microbiome transform
#' @importFrom ggpubr as_ggplot
#' @importFrom ggpubr get_legend
#' @importFrom plotly ggplotly
#'
#'
#'
#' @export
# Decontam Function
bars_fun <- function(data = data, bar = TRUE, compo1 = TRUE, output = "./plot_bar/", column1 = "", column2 = "",
sname = FALSE, num = 10, rare = NULL, rank = "Genus", verbose = TRUE){
# suppressMessages(source(system.file("supdata", "phyloseq_extended_graphical_methods.R", package="ranomaly"))) #ggrare function
if(verbose==FALSE){
flog.threshold(ERROR)
print(flog.threshold())
}
out1 <- paste(getwd(),'/',output,'/',sep='')
if(!dir.exists(output)){
dir.create(out1, recursive=TRUE)
}else{
unlink(out1, recursive=TRUE)
dir.create(out1, recursive=TRUE)
}
taxonomy <- sapply(strsplit(rank,","), '[')
#Gestion NA
fun <- paste("data <- subset_samples(data, !is.na(",column1,"))",sep="")
eval(parse(text=fun))
# Bars
rmd_data=list()
if(bar==TRUE){
for(i in 1:length(taxonomy)){
j <- taxonomy[i]; #print(j) #ranks
psobj.top <- aggregate_top_taxa(data, j, top = num)
tn = taxa_names(psobj.top)
tn[tn=="Other"] = tn[length(tn)]
tn[length(tn)] = "Other"
if(column1 != '' & column2 == ''){
flog.info('Plotting bar (%s)...',j)
if(sname == TRUE){
plot.composition.COuntAbun <- plot_composition(psobj.top, x.label = column1, sample.sort=column1, otu.sort=tn)
plot.composition.COuntAbun <- plot_composition(psobj.top, x.label = "sample.id", sample.sort=column1, otu.sort=tn)
}
plot.composition.COuntAbun <- plot.composition.COuntAbun + theme(legend.position = "bottom") +
theme_bw() + scale_fill_viridis(discrete = TRUE, direction=-1) +
theme(axis.text.x = element_text(angle = 90)) +
ggtitle("Raw abundance") + theme(legend.title = element_text(size = 18))
flog.info('Done.')
}
else if(column1 != '' & column2 != ''){
flog.info('Plotting bar (%s)...',j)
sdata = psobj.top@sam_data@.Data
names(sdata) = psobj.top@sam_data@names
FACT1=sdata[[column2]]
(lvls = levels(as.factor(sdata[[column2]])))
LL <- list()
for(i in 1:length(lvls)){
fun <- paste("ppp <- subset_samples(psobj.top, ",column2," %in% '",lvls[i],"')",sep="")
eval(parse(text=fun))
tn = taxa_names(ppp)
tn[tn=="Other"] = tn[length(tn)]
tn[length(tn)] = "Other"
if(sname){
p1 <- plot_composition(ppp, x.label = column1, verbose=TRUE,sample.sort=column1, otu.sort=tn)
p1 <- plot_composition(ppp, x.label = "sample.id", verbose=TRUE,sample.sort=column1, otu.sort=tn)
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
}
p1 <- p1 + theme(legend.position = "bottom") +
theme_bw() + scale_fill_viridis(discrete = TRUE, direction=-1) +
theme(axis.text.x = element_text(angle = 90), legend.title = element_text(size = 18)) +
ggtitle(paste("Raw abundance",column2,"=", lvls[i]))
###ici legende separee
if(i < length(lvls)){
p2 <- p1 + theme(legend.position = "none")
LL[[i]] <- p2
}else{
p2 <- p1 + theme(legend.position = "none")
LL[[i]] <- p2
leg = ggpubr::get_legend(p1)
LL[[i+1]] <- ggpubr::as_ggplot(leg)
}
}
plot.composition.COuntAbun <- p3 <- gridExtra::grid.arrange(grobs=LL, ncol=length(lvls)+1)
flog.info('Done.')
}
fun <- paste('rmd_data$bars$',j,' <- plot.composition.COuntAbun',sep='')
eval(parse(text=fun))
}
}
# Composition
compo <- function (rankList, psobj, var = 'sample.id', col2='') {
if(col2 != ''){
sdata = psobj@sam_data@.Data
names(sdata) = psobj@sam_data@names
FACT1=sdata[[col2]]
lvls = levels(as.factor(sdata[[col2]]))
for(i in 1:length(rankList)){
j <- rankList[i]
LL <- list()
for(k in 1:length(lvls)){
LVL=lvls[k]
fun <- paste("ppp <- subset_samples(psobj, ",column2," %in% '",LVL,"')",sep="")
eval(parse(text=fun))
flog.info('Plotting %s composition (%s)...',var, j)
psobj.fam <- aggregate_top_taxa(ppp, j, top = num)
psobj.rel <- transform(psobj.fam, "compositional")
tn = taxa_names(psobj.rel)
tn[tn=="Other"] = tn[length(tn)]
tn[length(tn)] = "Other"
p1 <- plot_composition(psobj.rel, x.label = column1, sample.sort=column1, otu.sort=tn) +
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
theme() + theme_bw() + scale_fill_viridis(discrete = TRUE, direction=-1) +
theme(axis.text.x = element_text(angle = 90), legend.title = element_text(size = 18)) +
ggtitle(paste("Relative abundance",column2,"=", LVL))
if(k < length(lvls)){
p2 <- p1 + theme(legend.position = "none")
LL[[k]] <- p2
}else{
p2 <- p1 + theme(legend.position = "none")
LL[[k]] <- p2
leg = ggpubr::get_legend(p1)
LL[[k+1]] <- ggpubr::as_ggplot(leg) + theme( plot.background = element_blank())
}
}
p3 <- gridExtra::grid.arrange(grobs=LL, ncol=length(lvls)+1)
flog.info('Done.')
# fun <- paste('rmd_data$compo$',j,'[["',column2,'_',LVL,'"]]',' <- p3',sep='')
fun <- paste('rmd_data$compo$',j,' <- p3',sep='')
eval(parse(text= fun))
flog.info('Done.')
}
}else{
for(i in 1:length(rankList)){
j <- rankList[i]
flog.info('Plotting %s composition (%s)...',var, j)
psobj.fam <- aggregate_top_taxa(psobj, j, top = num)
psobj.rel <- transform(psobj.fam, "compositional")
tn = taxa_names(psobj.rel)
tn[tn=="Other"] = tn[length(tn)]
tn[length(tn)] = "Other"
p1 <- plot_composition(psobj.rel, x.label = column1, sample.sort=column1, otu.sort=tn) +
theme() + theme_bw() + scale_fill_viridis(discrete = TRUE, direction=-1) +
theme(axis.text.x = element_text(angle = 90), legend.title = element_text(size = 18)) +
ggtitle("Relative abundance")
fun <- paste('rmd_data$compo$',j,' <- p1',sep='')
eval(parse(text= fun))
flog.info('Done.')
}
}
return(rmd_data)
}
#
if(!is.null(rare)){
flog.info('Plotting rarefaction ...')
GROUPE=rare
plot_rare <- ggrare(data, step = 100, color = rare, plot = FALSE)
plot_rare <- plot_rare + facet_wrap(GROUPE, ncol = 4) + theme_bw()
rmd_data$rare <- ggplotly(plot_rare)
flog.info('Done.')
}
#Coupage selon le facteur 2
if(compo1==TRUE){
if(column1 != '' & column2 != ''){
vector <- levels(data.frame(sample_data(data)[,column2])[,1])
rmd_data <- compo(taxonomy,data,col2=column2)
}else{
rmd_data <- compo(taxonomy,data,column1)
}
}
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Generating rmd template for report
# PATHanomaly="/home/erifa/Repository/LRF/anomaly/"
sink(paste(out1,'/bars2.Rmd', sep=""))
cat("---
title: Bar plot
fig_width: 24
params:
rmd_data: p
col1: col1
---
```{r message=FALSE, warning=FALSE, include=FALSE, results='hide'}
rmd_data <- params$rmd_data
```
```{r hold=TRUE, echo=FALSE, comment = FALSE, message= FALSE, warning = FALSE, results='asis',fig.keep='all', fig.align='left', fig.width = 10, fig.height = 10}
if('rare' %in% names(rmd_data)){
cat('# Rarefaction plot\\n')
rmd_data$rare
}
```
```{r hold=TRUE, echo=FALSE, comment = FALSE, message= FALSE, warning = FALSE, results='asis',fig.keep='all', fig.align='left', fig.width = 20, fig.height = 10}
if('bars' %in% names(rmd_data)){
cat('# Plot raw value composition')
cat('\\n')
}
```
")
for(Nplot in names(rmd_data$bars)){
if(Nplot %in% names(rmd_data$bars)){
cat(paste("
```{r hold=TRUE, echo=FALSE, comment = FALSE, message= FALSE, warning = FALSE, results='asis', fig.keep='all', fig.align='left', fig.width = 20, fig.height = 10}
cat('\\n')
cat('## ",Nplot,"')
cat('\\n')
grid.draw(rmd_data$bars[['",Nplot,"']])
```
", sep=""))
}
}
cat("
```{r hold=TRUE, echo=FALSE, comment = FALSE, message= FALSE, warning = FALSE, results='asis',fig.keep='all', fig.align='left', fig.width = 20, fig.height = 10}
if('compo' %in% names(rmd_data)){
cat('# Composition plot')
cat('\\n')
```
")
for(Nplot in names(rmd_data$compo)){
if(Nplot %in% names(rmd_data$compo)){
cat(paste("
```{r hold=TRUE, echo=FALSE, comment = FALSE, message= FALSE, warning = FALSE, results='asis', fig.keep='all', fig.align='left', fig.width = 20, fig.height = 10}
cat('\\n')
cat('## ",Nplot,"')
cat('\\n')
grid.draw(rmd_data$compo[['",Nplot,"']])
```
", sep=""))
}
}
sink()
# cat(paste('## ',",Nplot,",sep=''))
render(paste(out1,'/bars2.Rmd', sep=""),params= list('rmd_data' = rmd_data, 'col1' = column1),output_file=paste(out1,'/','bars.html',sep='')) ## determiner automatiquement le path du md
flog.info('Return values.')
return(rmd_data)
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
}
#' Barplots plotly
#'
#'
#' @param data output from decontam or generate_phyloseq
#' @param rank Rank to output
#' @param top Number of top taxa to plot
#' @param ord1 Variable used to order sample (X axis)
#' @param fact1 Variable used to change X axis tick labels and color categories
#' @param relative Plot relative plot (TRUE, default), raw abundance plot (FALSE)
#' @param output
#'
#' @return Exports barplots in an interactive plotly community plot
#'
#'
#' @import plotly
#' @importFrom microbiome aggregate_top_taxa
#' @importFrom reshape2 melt
#'
#'
#'
#' @export
bars_fun2 <- function(data = data, rank = "Genus", top = 10, Ord1 = NULL, Fact1 = NULL, relative = TRUE){
# print("compo")
# print(r$rowselect())
# print(r$data16S())
# print(r$asvselect())
# Fdata <- prune_samples(sample_names(r$data16S())[r$rowselect()], r$data16S())
# Fdata <- prune_taxa(taxa_sums(Fdata) > 0, Fdata)
# if( r$RankGlom() == "ASV"){
# Fdata <- prune_taxa(r$asvselect(), Fdata)
# }
Fdata = data
# print("top")
psobj.top <- aggregate_top_taxa(Fdata, rank, top = top)
# print("get data")
sdata = as.data.frame(sample_data(psobj.top))
sdata$sample.id = sample_names(psobj.top)
otable = as.data.frame(otu_table(psobj.top))
row.names(otable) = tax_table(psobj.top)[,rank]
# print("melt data")
dat= as.data.frame(t(otable))
dat <- cbind.data.frame(sdata, dat)
meltdat = reshape2::melt(dat, id.vars=1:ncol(sdata))
tt=levels(meltdat$variable)
meltdat$variable = factor(meltdat$variable, levels= c("Other", tt[tt!="Other"]))
LL=list()
# print(head(meltdat))
# print(levels(meltdat$sample.id))
fun = glue( "xform <- list(categoryorder = 'array',
categoryarray = unique(meltdat$sample.id[order(meltdat${Ord1})]),
title = 'Samples',
tickmode = 'array',
tickvals = 0:nrow(sdata),
ticktext = sdata[unique(meltdat$sample.id[order(meltdat${Ord1})]), '{Fact1}']@.Data[[1]],
tickangle = -45)")
eval(parse(text=fun))
# subplot to vizualize groups
# print(head(sdata))
df1 <- cbind.data.frame(x=sdata[unique(meltdat$sample.id[order(meltdat[,Ord1])]), "sample.id"]@.Data[[1]],
g=sdata[unique(meltdat$sample.id[order(meltdat[,Ord1])]), Fact1]@.Data[[1]],
y=1)
subp1 <- df1 %>% plot_ly(
type = 'bar',
x = ~x,
y = ~y,
color = ~g,
legendgroup = ~g,
showlegend = FALSE
) %>% layout(xaxis = list(zeroline = FALSE,showline = FALSE, showgrid = FALSE),
yaxis=list(showticklabels = FALSE,title = "",showgrid = FALSE))
if(relative){
#relative abondance
otable=apply(otable,2, function(x){Tot=sum(x); x/Tot})
dat= as.data.frame(t(otable))
dat <- cbind.data.frame(sdata, dat)
meltdat = data.table::melt(dat, id.vars=1:ncol(sdata))
tt=levels(meltdat$variable)
meltdat$variable = factor(meltdat$variable, levels= c("Other", tt[tt!="Other"]))
p1=plot_ly(meltdat, x = ~sample.id, y = ~value, type = 'bar', name = ~variable, color = ~variable) %>% #, color = ~variable
layout(title="Relative abundance", yaxis = list(title = 'Relative abundance'), xaxis = xform, barmode = 'stack')
p1 <- subplot(p1, subp1, nrows = 2, shareX = T, heights=c(0.95,0.05)) %>%
layout(xaxis = xform)
}else{
#raw abundance
p1=plot_ly(meltdat, x = ~sample.id, y = ~value, type = 'bar', name = ~variable, color = ~variable) %>% #, color = ~variable
layout(title="Raw abundance", yaxis = list(title = 'Raw abundance'), xaxis = xform, barmode = 'stack')
p1 <- subplot(p1, subp1, nrows = 2, shareX = T, heights=c(0.95,0.05)) %>%
layout(xaxis = xform)
}
return(p1)
}