diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml
index 90573b2369100335ba19b948ef07e3476c4bb2cb..07dcd383757f19e3d37add7b8bfd8247f515520c 100644
--- a/.gitlab-ci.yml
+++ b/.gitlab-ci.yml
@@ -1,9 +1,12 @@
-#image: python:3.7-alpine
-image: registry.forgemia.inra.fr/umr-gdec/magatt
+image: python:3.7-alpine
+#image: registry.forgemia.inra.fr/umr-gdec/magatt
 
 # global before script, set venv in all job
 before_script:
-    - source /opt/venv/cicd/bin/activate
+    - pip install -U sphinx
+    - pip install -U sphinx-rtd-theme
+    - pip install -U myst-parser
+
 
 test:
   stage: test
diff --git a/README.md b/README.md
index b1100a291dbfb7378a075c0d84d56cd0eb86f4f3..218dc1899039a705888abafad006fc8ea01bebe9 100644
--- a/README.md
+++ b/README.md
@@ -3,215 +3,3 @@ Marker Assisted Gene Annotation Transfert for Triticeae.
 Snakemake pipeline used to transfert GFF annotation on a new assembly with a fine target mapping approach.  
 
 Documentation : [https://umr-gdec.pages.mia.inra.fr/magatt/](https://umr-gdec.pages.mia.inra.fr/magatt/)
-
-## Install the pipeline
-
-```console
-$ git clone https://forgemia.inra.fr/umr-gdec/magatt.git
-```
-
-## Dependancies
-
-### Build magatt environment with conda
-
-We recommend to build the environment using conda (developped with miniconda 3, conda 4.9.2 ) with the file [environment.yml](environment.yml):  
-
-```console
-$ conda env create -f environment.yml -n magatt
-```
-
-Once created, you can  activate the environment with:
-
-```console
-$ conda activate magatt
-```
-
-All the dependancies installed in the conda env are listed below.  
-
-* Snakemake : 5.5.2
-* Python: 3.5
-* Biopython: 1.68
-* numpy: 1.15
-* pandas: 0.23
-* pysam: 0.15
-* Bedtools: 2.27
-* Blat: 36
-* Exonerate (fastavalidcds): 2.4.0
-* GenomeTools: 1.5.9
-* gffread: 0.9.11
-* GMAP: 2018-05-11
-* NCBI-blast (BLAST+): 2.6
-* Samtools: 1.9
-* BWA: 0.7
-
-## Prepare and run the pipeline
-
-### Creating the configuration file: inputs and other parameters
-
-The configuration file [config.yaml](config.yaml) will contain all the input files required for the pipeline and some other parameters.
-
-* Prepare the query genome data
-
-| Parameter in `config.yaml` | format |description |Example |  
-|----------------------------|--------|------------|--------|  
-|**annotationQuery** | GFF3 | The gff file of the annotation we want to transfert onto the new Target genome| annotationQuery: "/path/to/IWGSC_RefSeqv1_annotation.gff3"|  
-|**featureType** | \[STRING\] | The feature we want to use to anchore the annotation. Here we use the gene feature of the GFF.| featureType: 'gene|
-|**queryFasta** | FASTA | Fasta file of the genome reference sequence. Must match the GFF file used in `annotationQuery` parameter| queryFasta: '/path/to/IWGSC_RefSeqv1_annotation.fasta'|
-|**blastdb** | \[blast database\]|blast db of all mRNAs (all isoforms) of the query annotation. This will be used to rescue genes which have failed in the transfert|blastdb: 'data/IWGSCv1.1_all_mrna'|
-|**chromosomes**|python list|list of all the chromosomes in the query reference genome. This will be used to split all the data per chromosome and speed up the analysis|chromosomes: ['1A', '2A', '3A', '4A', '5A', '6A', '7A', '1B', '2B', '3B', '4B', '5B', '6B', '7B', '1D', '2D', '3D', '4D', '5D', '6D', '7D', 'U']|
-
-* Prepare the markers/ISBPs input data
-
-The pipeline uses markers/ISBPs as anchores to target a restricted part of the target genome on which our genes are suspected to be located.
-
-| Parameter in `config.yaml` | format |description |Example |  
-|----------------------------|--------|------------|--------|  
-|**isbpBed**| BED|Initial coordinates of the markers/ISBPs on the query genome|isbpBed: 'data/ISBP_refseqv1.bed'|
-|**mapq**| \[INT\]|Minimum mapping quality of the marker/ISBP to be kept in the anchoring process|mapq: 30|
-|**mismatches**| \[INT\]|Max missmatches allowed for a marker to be kept in the analysis|mismatches: 0|
-
-* Prepare the target genome data
-
-Here, we only need the fasta of the new genome assembly
-
-| Parameter in `config.yaml` | format |description |Example |  
-|----------------------------|--------|------------|--------|  
-|**targetFasta**|FASTA|fasta file of the target genome assembly on which we transfert the annotation|targetFasta: 'data/CS_pesudo_v2.1.fa'|  
-|**targetGmapIndex**|PATH|Name of the GMAP index directory. This will be used with the `-d` option of `gmapl`|targetGmapIndex: 'ensembl_Triticum_aestivum_julius_2022-9-16'|  
-|**targetBwaIdx**|BWA index|Prefix for the BWA index files|targetBwaIdx: '/home/herimbert/gdec/shared/triticum_aestivum/arinalrfor/current/bwa/all'|  
-|**targetGmapIndexPath**|PATH|Full path to the directory in which the GMAPindex is found. This will be used with the `-D` option of `gmapl`|targetGmapIndexPath: '/home/data/triticum_aestivum/julius/gmapdb/all/'|  
-
-* Output parameters/settings
-
-| Parameter in `config.yaml` | format |description |Example |  
-|----------------------------|--------|------------|--------|  
-|**results**| \[STRING\] | directory in which all the Snakemake rules will be executed|results: 'results'|
-|**finalPrefix**| \[STRING\] | Prefix for all the final output files (annotaion, mrna/pep fasta sequences ect)|finalPrefix: 'IWGSC_refseqv2.0_annotv2.0'|
-|**chromMapID**| CSV| Mapping file which sets the correspondance between the chromosome names in the GFF and the chromosome ID in the newlygenerated gene IDs|chromMapID: 'data/chromosomeMappingID.csv'|
-|**transferType**| \[STRING\] | transfert all isoforms or only the representative transcript (.1) for each gene in the reference genome | transferType: 'all' ; transferType: 'first'|
-
-Example of `chromosomeMappingID.csv` file :
-
-```bash
-$ cat data/chromosomeMappingID.csv
-Chr1A   1A
-Chr1B   1B
-Chr1D   1D
-Chr2A   2A
-Chr2B   2B
-Chr2D   2D
-Chr3A   3A
-Chr3B   3B
-Chr3D   3D
-Chr4A   4A
-Chr4B   4B
-Chr4D   4D
-Chr5A   5A
-Chr5B   5B
-Chr5D   5D
-Chr6A   6A
-Chr6B   6B
-Chr6D   6D
-Chr7A   7A
-Chr7B   7B
-Chr7D   7D
-```
-
-Once all those parameters has been set up, the final configuration file may look like this:
-
-```yaml
-##### QUERY related files/parameters (refseqv1.0)
-# GFF annotatin to transfert
-annotationQuery: 'data/IWGSC_v1.1_20170706.gff3'
-# feature type used for anchoring on target genome
-featureType: 'gene'
-# FASTA of the query (used to check the sequences after the coordinates are calculated on the target genome)
-queryFasta: 'data/161010_Chinese_Spring_v1.0_pseudomolecules.fasta'
-# blastdb of all mrnas. used to rescue genes which have failed in the transfert using the targeted approache
-blastdb: 'data/IWGSCv1.1_all_mrna'
-# map of all chromosome ids --> NEED TO BE UPDATED in another version WITH ONE ARRAY FOR THE QUERY AND ONE ARRAY FOR THE TARGET GENOME ASSEMBLY
-chromosomes: ['1A', '2A', '3A', '4A', '5A', '6A', '7A', '1B', '2B', '3B', '4B', '5B', '6B', '7B', '1D', '2D', '3D', '4D', '5D', '6D', '7D', 'U']
-refChrom: ['chr1A', 'chr1B', 'chr1D', 'chr2A', 'chr2B', 'chr2D', 'chr3A', 'chr3B', 'chr3D', 'chr4A', 'chr4B', 'chr4D', 'chr5A', 'chr5B', 'chr5D', 'chr6A', 'chr6B', 'chr6D', 'chr7A', 'chr7B', 'chr7D', 'chrUn']
-
-##### TARGET related files/parameters (refseqv2.1)
-targetFasta: 'data/CS_pesudo_v2.1.fa'
-#GMAP index of the genome for -d option
-targetGmapIndex: 'ensembl_Triticum_aestivum_julius_2022-9-16'
-#GMAP index: path to the gmapindex directory, for -D option
-targetGmapIndexPath: '/home/herimbert/gdec/shared/triticum_aestivum/julius/current/gmapdb/all/'
-
-
-##### ISBP/markers related config and parameters
-# BAM file of markers/ISBPs mapped on the target genome (REFSEQ v2.1)
-isbpBam: 'data/iwgsc_refseqv1_ISBP.bwav2.1.bam'
-# BED file of coordinates on the query genome (REFSEQ v1.0)
-isbpBed: 'data/ISBP_refseqv1.bed'
-# minimum mapping quality of markers on the target genome
-mapq: 30
-# max mismatches per ISBP/marker
-mismatches: 0
-
-##### OUTPUT directory
-results: 'resultsDEV'
-finalPrefix: 'IWGSC_refseqv2.0_annotv2.0'
-# this file contains two columns: the first is the chromosome name as it appears in the genome.fasta of the new reference,
-# and the second the chromosome name as it will appear in the new gene Names
-chromMapID: 'data/chromosomeMappingID.csv'
-```
-
-## Running the pipeline
-
-At first, it is recommended to make a dry-run of the analysis:
-```bash
-$ snakemake -nrp
-```
-This will check all the rules and th parameters in the `config.yaml` file and print all the command lines which would have been executed.  
-If there is no errors, then you can execute the pipeline with:
-
-```bash
-$ snakemake
-```
-
-If you have multiple CPUs available on your computer, you can choose to use them.  
-For example, if you want to use up to 8 CPUs in parallel, you can run:
-
-```bash
-$ snakemake -j 8
-```
-
-If you are on a computer cluster with a job scheduler, you can tell the pipeline to use this scheduler instead of runnin all the processes on the local machine:
-```bash
-$ snakemake -j 32 --cluster sbatch
-```
-
-This will allow to have at most 32 subproccess run through the SLURM scheduler with `sbatch`.
-
-You can use a custom [cluster.json](cluster.json) JSON file do setup the parameters of SBATCH for each rules, and use it with with:    
-```console
-$ snakemake -j 32 --cluster-config cluster-hpc2.json --cluster "sbatch -J {cluster.jobName} -c {cluster.c} --mem {cluster.mem} -e {cluster.error} -o {cluster.output} -p gdec" --verbose"
-```
-
-The pipeline comes with conda environment file which can be used by Snakemake. To enable the use of conda:
-```console
-$ snakemake --use-conda -j 8 --cluster-config cluster-hpc2.json --cluster "sbatch -p {cluster.partition} -c {cluster.c} -N 1 -t {cluster.time} -J {cluster.jobName} --mem={cluster.mem} -e {cluster.error} -o {cluster.output}" 
-```
-
-It is possible to force Snakemake to wait for a defined amount of time in case of latency on the filesystem of your cluster/server.
-```console
-# wating 30 seconds after each job to check for output files
-$ snakemake --latency-wait 30 [...]
-```
-
-You can generate the diagram of all the processes and dependancies of you analysis:
-```bash
-$ snakemake --dag |dot -T png > dag.png
-```
-This will generate a PNG file of your diagram.  
-![dag.svg](report/dag.svg)
-
-If you simply want the global process of the pipeline, you may run:
-```bash
-$ snakemake --rulegraph |dot -T png > rulegraph.png
-```
-This will generate a PNG file of your diagram.  
-![rulegraph.svg](report/rulegraph.svg)
diff --git a/Singularity b/Singularity
index 8a28c7393e9fa9d55905d5af9bb12f330b4b9a03..953cf9c05fb3b43a328c60734d2390b78322a181 100644
--- a/Singularity
+++ b/Singularity
@@ -3,7 +3,7 @@ From: conda/miniconda3
 IncludeCmd: yes
 
 %files
-env.yaml /environment.yml
+envs/magatt.yaml /environment.yml
 
 %help
 Contains all MAGATT dependancies
diff --git a/cluster-sibi.json b/cluster-sibi.json
deleted file mode 100644
index 573eca1d2212adf9d438d8aaf8a8f4991c30acae..0000000000000000000000000000000000000000
--- a/cluster-sibi.json
+++ /dev/null
@@ -1,22 +0,0 @@
-{
-	"__default__" :
-	{
-		"c" : 1,
-		"mem" : "4G",
-		"jobName" : "magatt_{rule}",
-		"error" : "slurm_%x-%J.log",
-		"output" : "slurm_%x-%J.log"
-	},
-	"mapHomologousRegions" :
-	{
-		"mem" : "8G"
-	},
-	"gmapRescue":
-	{
-		"mem" : "8G"
-	},
-	"gmapIndexTarget":
-	{
-		"mem" : "64G"
-	}
-}
diff --git a/docs/conf.py b/docs/conf.py
index 86c4b2fef52cc679dcecf1bcc8011064e7b171dc..31a86c28b0088c6d3d166d3a9dd008e786d6ff0e 100644
--- a/docs/conf.py
+++ b/docs/conf.py
@@ -29,6 +29,6 @@ source_suffix = {
 # https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output
 
 html_theme = 'sphinx_rtd_theme'
-html_static_path = ['source/_static']
-html_templates_path = ['source/_templates']
+#html_theme = 'haiku'
+html_static_path = ['_static']
 
diff --git a/docs/index.rst b/docs/index.rst
index d4a0ee79d988176e440e49efe8c6e5b117b044ce..8aa92a717ce3ee8400067e0b64b5c90d88e87d9b 100644
--- a/docs/index.rst
+++ b/docs/index.rst
@@ -10,6 +10,8 @@ Marker Assisted Gene Annotation Transfert for Triticeae.
 
 Snakemake pipeline used to transfert GFF annotation on a new assembly with a fine target mapping approach.  
 
+GitLab Repository : https://forgemia.inra.fr/umr-gdec/magatt
+
 .. toctree::
    :maxdepth: 2
    :titlesonly:
@@ -24,3 +26,4 @@ Snakemake pipeline used to transfert GFF annotation on a new assembly with a fin
    :caption: Configuration
 
    source/pipeline_conf
+   source/run_pipeline
diff --git a/docs/source/install.md b/docs/source/install.md
index 90a8095485b0d3ba266bce8947f084d84d772f4c..bfb67f67de5350b12ba5ea87fb4caae25ddf6a20 100644
--- a/docs/source/install.md
+++ b/docs/source/install.md
@@ -12,7 +12,7 @@ $ git clone https://forgemia.inra.fr/umr-gdec/magatt.git
 We recommend to build the environment using conda (developped with miniconda 3, conda 4.9.2 ) with the file [environment.yml](https://forgemia.inra.fr/umr-gdec/magatt/-/blob/master/envs/environment.yml):  
 
 ```console
-$ conda env create -f environment.yml -n magatt
+$ conda env create -f envs/environment.yml -n magatt
 ```
 
 Once created, you can  activate the environment with:
diff --git a/docs/source/pipeline_conf.md b/docs/source/pipeline_conf.md
index c2b98e8624f0d417cf504f0766c9f511812550d1..ed5423a399361d3e1b4d2114a2a2af592c46de54 100644
--- a/docs/source/pipeline_conf.md
+++ b/docs/source/pipeline_conf.md
@@ -1,4 +1,4 @@
-# Prepare and run the pipeline
+# Prepare and configure the pipeline
 
 ## Creating the configuration file: inputs and other parameters
 
@@ -31,9 +31,9 @@ Here, we only need the fasta of the new genome assembly
 | Parameter in `config.yaml` | format |description |Example |  
 |----------------------------|--------|------------|--------|  
 |**targetFasta**|FASTA|fasta file of the target genome assembly on which we transfert the annotation|targetFasta: 'data/CS_pesudo_v2.1.fa'|  
+|**targetBwaIdx**|BWA index|Prefix for the BWA index files|targetBwaIdx: '/data/db/triticum_aestivum/julius/current/bwa/all'|  
 |**targetGmapIndex**|PATH|Name of the GMAP index directory. This will be used with the `-d` option of `gmapl`|targetGmapIndex: 'ensembl_Triticum_aestivum_julius_2022-9-16'|  
-|**targetBwaIdx**|BWA index|Prefix for the BWA index files|targetBwaIdx: '/home/herimbert/gdec/shared/triticum_aestivum/arinalrfor/current/bwa/all'|  
-|**targetGmapIndexPath**|PATH|Full path to the directory in which the GMAPindex is found. This will be used with the `-D` option of `gmapl`|targetGmapIndexPath: '/home/data/triticum_aestivum/julius/gmapdb/all/'|  
+|**targetGmapIndexPath**|PATH|Full path to the directory in which the GMAPindex is found. This will be used with the `-D` option of `gmapl`|targetGmapIndexPath: '/data/db/triticum_aestivum/julius/gmapdb/all/'|  
 
 * Output parameters/settings
 
@@ -92,7 +92,7 @@ targetFasta: 'data/CS_pesudo_v2.1.fa'
 #GMAP index of the genome for -d option
 targetGmapIndex: 'ensembl_Triticum_aestivum_julius_2022-9-16'
 #GMAP index: path to the gmapindex directory, for -D option
-targetGmapIndexPath: '/home/herimbert/gdec/shared/triticum_aestivum/julius/current/gmapdb/all/'
+targetGmapIndexPath: '/data/db/triticum_aestivum/julius/current/gmapdb/all/'
 
 
 ##### ISBP/markers related config and parameters
@@ -112,69 +112,3 @@ finalPrefix: 'IWGSC_refseqv2.0_annotv2.0'
 # and the second the chromosome name as it will appear in the new gene Names
 chromMapID: 'data/chromosomeMappingID.csv'
 ```
-
-# Running the pipeline
-
-At first, it is recommended to make a dry-run of the analysis:
-```bash
-$ snakemake -nrp
-```
-This will check all the rules and th parameters in the `config.yaml` file and print all the command lines which would have been executed.  
-If there is no errors, then you can execute the pipeline with:
-
-```bash
-$ snakemake
-```
-
-If you have multiple CPUs available on your computer, you can choose to use them.  
-For example, if you want to use up to 8 CPUs in parallel, you can run:
-
-```bash
-$ snakemake -j 8
-```
-
-If you are on a computer cluster with a job scheduler, you can tell the pipeline to use this scheduler instead of runnin all the processes on the local machine:
-
-```bash
-$ snakemake -j 32 --cluster sbatch
-```
-
-This will allow to have at most 32 subproccess run through the SLURM scheduler with `sbatch`.
-
-You can use a custom [cluster.json](https://forgemia.inra.fr/umr-gdec/magatt/-/blob/master/cluster.json) JSON file do setup the parameters of SBATCH for each rules, and use it with with:    
-
-```console
-$ snakemake -j 32 --cluster-config cluster-hpc2.json --cluster "sbatch -J {cluster.jobName} -c {cluster.c} --mem {cluster.mem} -e {cluster.error} -o {cluster.output} -p gdec" --verbose"
-```
-
-The pipeline comes with conda environment file which can be used by Snakemake. To enable the use of conda:
-
-```console
-$ snakemake --use-conda -j 8 --cluster-config cluster-hpc2.json --cluster "sbatch -p {cluster.partition} -c {cluster.c} -N 1 -t {cluster.time} -J {cluster.jobName} --mem={cluster.mem} -e {cluster.error} -o {cluster.output}" 
-```
-
-It is possible to force Snakemake to wait for a defined amount of time in case of latency on the filesystem of your cluster/server.
-
-```console
-# wating 30 seconds after each job to check for output files
-$ snakemake --latency-wait 30 [...]
-```
-
-You can generate the diagram of all the processes and dependancies of you analysis:
-
-```bash
-$ snakemake --dag |dot -T png > dag.png
-```
-This will generate a PNG file of your diagram.  
-
-![dag.svg](img/dag.png)
-
-If you simply want the global process of the pipeline, you may run:
-
-```bash
-$ snakemake --rulegraph |dot -T png > rulegraph.png
-```
-
-This will generate a PNG file of your diagram.  
-
-![rulegraph.svg](img/rulegraph.png)
diff --git a/docs/source/run_pipeline.md b/docs/source/run_pipeline.md
new file mode 100644
index 0000000000000000000000000000000000000000..203ed2ada33c756bbe3d1212df01f00b86489025
--- /dev/null
+++ b/docs/source/run_pipeline.md
@@ -0,0 +1,76 @@
+# Running the pipeline
+
+## Check
+
+At first, it is recommended to make a dry-run of the analysis:
+```bash
+$ snakemake -nrp
+```
+
+## Run locally
+
+This will check all the rules and th parameters in the `config.yaml` file and print all the command lines which would have been executed.  
+If there is no errors, then you can execute the pipeline with:
+
+```bash
+$ snakemake
+```
+
+If you have multiple CPUs available on your computer, you can choose to use them.  
+For example, if you want to use up to 8 CPUs in parallel, you can run:
+
+```bash
+$ snakemake -j 8
+```
+
+## Run on cluster
+
+If you are on a computer cluster with a job scheduler, you can tell the pipeline to use this scheduler instead of runnin all the processes on the local machine:
+
+```bash
+$ snakemake -j 32 --cluster sbatch
+```
+
+This will allow to have at most 32 subproccess run through the SLURM scheduler with `sbatch`.
+
+You can use a custom [cluster.json](https://forgemia.inra.fr/umr-gdec/magatt/-/blob/master/cluster-hpc2.json) JSON file do setup the parameters of SBATCH for each rules, and use it with with:    
+
+```console
+$ snakemake -j 32 --cluster-config cluster-hpc2.json --cluster "sbatch -J {cluster.jobName} -c {cluster.c} --mem {cluster.mem} -e {cluster.error} -o {cluster.output} -p gdec" --verbose"
+```
+
+## Use Conda environment
+
+The pipeline comes with conda environment file which can be used by Snakemake. To enable the use of conda:
+
+```console
+$ snakemake --use-conda -j 8 --cluster-config cluster-hpc2.json --cluster "sbatch -p {cluster.partition} -c {cluster.c} -N 1 -t {cluster.time} -J {cluster.jobName} --mem={cluster.mem} -e {cluster.error} -o {cluster.output}" 
+```
+
+It is possible to force Snakemake to wait for a defined amount of time in case of latency on the filesystem of your cluster/server.
+
+```console
+# wating 30 seconds after each job to check for output files
+$ snakemake --latency-wait 30 [...]
+```
+
+## Diagrams and graphs
+
+You can generate the diagram of all the processes and dependancies of you analysis:
+
+```bash
+$ snakemake --dag |dot -T png > dag.png
+```
+This will generate a PNG file of your diagram.  
+
+![dag.svg](img/dag.png)
+
+If you simply want the global process of the pipeline, you may run:
+
+```bash
+$ snakemake --rulegraph |dot -T png > rulegraph.png
+```
+
+This will generate a PNG file of your diagram.  
+
+![rulegraph.svg](img/rulegraph.png)
diff --git a/env.yaml b/envs/magatt.yaml
similarity index 99%
rename from env.yaml
rename to envs/magatt.yaml
index 5771e2547a3e1375175aaf4d48bfb2180c8bd92e..7fa183673d3bc395a28ddb990f86587f1bd59021 100644
--- a/env.yaml
+++ b/envs/magatt.yaml
@@ -113,3 +113,4 @@ dependencies:
   - xz=5.2.5=h516909a_1
   - zlib=1.2.11=h516909a_1010
   - zstd=1.4.5=h6597ccf_2
+  - bwa